初高中地理网欢迎你!

3.3 降水(3)

作者:地理人来源:未知 时间:2022-08-20 阅读: 字体: 在线投稿
  由于冲并作用,水滴不断增大,在空气中下降时就不再保持球形。开始下降时,底部平整,上部因表面张力而保持原来的球形。当水滴继续增大,在空气中下降时,除受表面张力外,还要受到周围作用在水滴上的压力以及因重力引起的水滴内部的静压力差,二者均随水滴的增长及下降而不断增大。在三种力的作用下,水滴变形越来越剧烈,底部向内凹陷,形成一个空腔。空腔越变越大,越变越深,上部越变越薄,最后破碎成许多大小不同的水滴。水滴在下降过程中保持不破碎的最大尺度称为临界尺度,常用等体积球体的半径来表示,称为临界半径或破碎半径。在不同的气流条件下,临界半径是不同的。如在均匀气流条件下,临界半径为450—500μm。而在有扰动的瞬时气流条件下,临界半径约为300μm。在自然界中观测到的临界半径为300—350μm,这是因为大气具有湍流的缘故。当大气中的雨滴增大到300—350μm时,就要破碎成几个较大的滴和一些小滴,它们可以被上升气流携带上升,并在上升过程中作为新一代的胚胎而增长,长大到上升气流支托不住时再次下降,在下降过程中继续增大,当大到临界半径后,再次破碎分裂而重复上述过程。云中水滴增大—破碎—再增大—再破碎的循环往复过程,常用来解释暖云降水的形成,称之为“链锁反应”,有时也称为暖云的繁生机制。

  产生“链锁反应”的条件是:上升气流要大于6m/s(对于不同的滴有不同的要求),云中含水量要大于2g/m3,同时还要求一定的云厚。当然,“链锁反应”不会无限地继续下去,因为强烈的上升气流无法持久,云的宏观条件和微观结构也在迅速改变。同时,当大量雨滴下降时会抑制上升气流,或带来下沉气流。例如雷雨时的情况,下一阵大雨之后、云体即崩溃消散。

  上述两种云滴增大过程在由云滴转化为降水的过程中始终存在。但观测表明,在云滴增长的初期,凝结(或凝华)增长为主,冲并为次。当云滴增大到一定阶段(一般直径达50—70μm)后,凝结(或凝华)过程退居次要地位,而以重力冲并为主。在低纬度地区,云中出现冰水共存的机会较少,形成所谓暖云(指整个云体的温度在0℃以上,云体由水滴构成,又称为水成云)降水,这时冲并作用更为重要。总之,凝结(或凝华)增长和冲并增长两种过程是不可分割的。我们必须辩证地看待这两种过程的作用,以深入了解降水形成的理论,为人工控制降水奠定基础。
二、雨和雪的形成

  (一)雨的形成

  由液态水滴(包括过冷却水滴)所组成的云体称为水成云。水成云内如果具备了云滴增大为雨滴的条件,并使雨滴具有一定的下降速度,这时降落下来的就是雨或毛毛雨。由冰晶组成的云体称为冰成云,而由水滴(主要是过冷却水滴)和冰晶共同组成的云称为混合云。从冰成云或混合云中降下的冰晶或雪花,下落到0℃以上的气层内,融化以后也成为雨滴下落到地面,形成降雨。

  在雨的形成过程中,大水滴起着重要的作用。当水滴半径增大到2—3mm时,水分子间的引力难以维持这样大的水滴,在降落途中,就很容易受气流的冲击而分裂,通过“连锁反应”,使大水滴下降,小水滴继续存在,形成新的大水滴。这是上升气流较强的水成云和混合云中形成雨的重要原因。

  (二)雪的形成

  在混合云中,由于冰水共存使冰晶不断凝华增大,成为雪花。当云下气温低于0℃时,雪花可以一直落到地面而形成降雪。如果云下气温高于0℃时,则可能出现雨夹雪。雪花的形状极多,有星状、柱状、片状等等,但基本形状是六角形。

  本文标题:3.3 降水(3)
  免责声明:本文来源于网络,文中有些文字或数据已经过期失效,仅供学习备课参考!
  电脑版地址:http://www.cgzdl.com/shuku/164/10281.html
  手机版地址:http://m.cgzdl.com/shuku/164/10281.html

标签:降水

最新评论列表

(共有 条评论) 我要发表评论