初高中地理网欢迎你!

岩浆作用与变质作用-变质作用

作者:地理人来源:未知 时间:2022-08-13 阅读: 字体: 在线投稿

第二节  变质作用

变质作用(metamorphism)是指在地下特定的地质环境中,由于物理、化学条件的改变,使原有岩石基本上在固体状态下发生物质成分与结构、构造变化而形成新岩石的地质作用。由变质作用所形成的新岩石称为变质岩。变质作用的原岩可以是沉积岩、岩浆岩及变质岩,它们在形成时与当时的物理、化学条件之间处于平衡或稳定状态,但是这种平衡和稳定状态都是相对的和暂时的,一旦它们所处的物理、化学条件发生变化,原有平衡就会遭到破坏,原岩便被改造成为在新的环境中稳定的岩石。例如,在地表浅海环境中形成的石灰岩,如果处于地下较高温的条件下,它将会转变成为大理岩。

促使沉积物转变成为沉积岩的成岩作用,通常也是在地下一定深度和一定的温度、压力等条件下进行的,它与变质作用有相似之处,但成岩作用所要求的深度、压力和温度都较小,在作用的过程中物质发生的变化不十分明显;而变质作用所要求的温度与压力较高、深度较大,在作用过程中原岩变化显著。一般来说,成岩作用的温度小于150~200℃,围压低于100~200MPa;而变质作用则要高于这一数值。因此,可以说成岩作用与变质作用具有过渡关系。变质作用虽与温度有重要关系,但温度并未使原岩熔融,即原岩基本上在固态下发生变质,一旦温度高到使原岩熔融,那么,就进入到了岩浆作用的范畴,因此变质作用与岩浆作用从发展上来看也是有联系的。对于大多数岩石来说,变质作用的高温界限大致为700~900℃。

一、变质作用的因素与方式

(一)引起变质作用的因素

引起变质作用的主要因素是温度、压力及化学活动性流体。

1.温度

温度往往是引起岩石变质的主导因素。它可以提供变质作用所需要的能量,使岩石中矿物的原子、离子或分子具有较强的活动性,促使一系列的化学反应和结晶作用得以进行;同时温度增高还可使矿物的溶解度加大,使更多的矿物成分进入岩石空隙中的流体内,增强了流体的渗透性、扩散性及化学活动性,促进了变质作用的过程。变质作用的温度范围可由150~200℃直到700~900℃。

导致岩石温度升高的主要原因有:①岩浆的侵入作用使其围岩温度升高;②当地壳浅部的岩石进入更深部时,由于地热增温使原岩的温度升高;③由深部热流上升所带来的热量使岩石的温度升高;④岩石遭受机械挤压或破裂错动时由机械能转化的热量使岩石的温度升高,这种热量一般较小或较局限。

2.压力

压力也是变质作用的重要因素,根据压力的性质可分为静压力和动压力。

静压力  又称围压,是由上覆岩石的重量引起的压力。它具有均向性,并且随着深度增加而增大。静压力的作用在于使岩石压缩,导致矿物中原子、分子或离子间的距离缩小,促使矿物内部结构改变,形成密度大、体积小的新矿物。如红柱石(Al2SiO5)是在压力较低的环境下形成的,相对密度为3.1~3.2g/cm3,当静压力增大时,它可以转变为化学成分相同、但分子体积较小的蓝晶石(Al2SiO5),其相对密度为3.56~3.68g/cm3。

动压力  是由构造运动所产生的定向压力。由于动压力只存在于一定的方向上,因而使得岩石在不同方向上产生了压力差。这种压力差在变质作用中有着十分重要的意义。它可以引起矿物的压溶作用,即在平行动压力方向上溶解较强,物质迁移到垂直动压力方向上沉淀,导致原岩发生矿物的重新分异与聚集,造成矿物定向排列;也可以使原岩破碎或产生变形,从而改造了原岩的结构与构造。

3.化学活动性流体

化学活动性流体是指在变质作用过程中存在于岩石空隙中的一种具有很大的挥发性和活动性的流体。这种流体的组分以H2O及CO2为主,并包含有多种其它易挥发物质及其溶解的矿物成分。在地下温度、压力较高的条件下,这种流体常呈不稳定的气-液混合状态存在,因而具有较强的物理化学活动性,在变质过程中起着十分重要的作用。

化学活动性流体可以促使矿物组分的溶解和迁移,引起原岩物质成分的变化;而且,这种流体作为固体与固体之间发生化学反应的媒介具有极重要的意义,因为固体之间的化学反应涉及到物质组分的交换,如果没有流体媒介,这种反应是极其缓慢的;同时,流体本身也积极参与了变质作用的各种化学反应;此外,流体的存在还会大大降低岩石的重熔温度,使变质作用的高温界限变低。

化学活动性流体具有多种来源。其中包括岩石空隙中原已存在的孔隙水、变质过程中从矿物结构中析出的H2O及CO2等挥发性物质、从岩浆中分离出的挥发性组分以及从地下深处分异上升的深部热液等。

必须指出,上述各种变质作用因素常常是互相配合、共同改造岩石的。但是,在不同的情况下起主要作用的因素会有所不同,因而变质作用也相应地显示出不同的特征。

(二)变质作用的方式

在温度、压力及化学活动性流体的作用下,原岩可发生物质成分和结构、构造的变化。但是,这一变化是如何得以完成的呢?了解变质作用的方式有助于我们了解变质作用的过程。变质作用的方式极其复杂多样,其主要的方式有以下几种。

1.重结晶作用(recrystallization)

重结晶作用是指岩石在固态下,同种矿物经过有限的颗粒溶解、组分迁移,然后又重新结晶成粗大颗粒的作用,在这一过程中并未形成新矿物。最典型的例子是隐晶质的石灰岩经重结晶作用后变成颗粒粗大的大理岩(主要矿物成分均为方解石)。重结晶作用在成岩作用中已经出现,但在变质作用中则表现得更加强烈和普遍。重结晶作用对原岩的改造主要是使其粒度加大、颗粒相对大小均一化、颗粒外形变得较规则。

2.变质结晶作用(metacrystallization)

变质结晶作用是指在变质作用的温度、压力范围内,在原岩总体化学成分基本保持不变的情况下(挥发分除外),原有矿物或矿物组合转变为新的矿物或矿物组合的作用。由于这种变化过程多数情况下涉及岩石中各种组分的重新组合,并以化学反应的方式完成,故又称重组合作用或变质反应。变质结晶作用的主要特点是有新矿物的形成和原矿物的消失,并且在反应前后岩石的总体化学成分基本不变。

3.交代作用(metasomatism)

交代作用是指变质过程中,化学活动性流体与固体岩石之间发生的物质置换或交换作用,其结果不仅形成新矿物,而且岩石的总体化学成分发生改变。例如,含Na+的流体与钾长石发生交代作用而置换出K+,形成新矿物钠长石(斜长石的一种):

KAlSi3O8+Na+→NaAlSi3O8+K+

(钾长石) (带入) (钠长石) (带出)

交代作用的特点是:在固态下进行;交代前后岩石的总体积基本保持不变;原矿物的溶解和新矿物的形成几乎同时进行;交代作用是在开放系统中进行的,反应前后岩石的总体化学成分发生改变。交代作用在变质过程中是比较普遍的,凡有化学活动性流体参加的情况下,总会有不同程度的交代作用发生。

二、变质作用的基本类型

变质作用发生的地质条件是极其复杂多样的,一般根据变质作用发生的地质背景和物理、化学条件,分为以下四种主要类型。

(一)接触变质作用

接触变质作用(contact  metamorphism)是在岩浆侵入体与围岩的接触带上,主要由岩浆活动所带来的热量及挥发性流体所引起的一种变质作用。

接触变质作用的主要变质因素是温度及化学活动性流体,压力居比较次要的地位。接触变质作用的温度较高,一般为300~800℃,由于热量是由岩体向外逐渐传递和扩散的,所以温度的平面分布为从岩体向外逐渐降低,直到与原岩温度过渡。接触变质作用发生的深度不大,通常在10km以内,这可能是因为在深部的围岩因地热增温本来就具有较高的温度,它与侵入体之间的温度反差较小,因而接触变质不明显。接触变质作用的动压力一般不明显,主要是静压力,但由于接触变质的深度小,故静压力较低,一般小于300MPa。所以,接触变质作用是发生在高温、低压的变质环境之中,发生接触变质的地区的地温梯度常达到  6℃/100m以上。

接触变质过程中的主要变质作用方式为温度和化学活动性流体所引起的重结晶作用、变质结晶作用与交代作用。接触变质作用围绕岩体周围发生,且离侵入体越近变质作用越强,远离侵入体则减弱直至完全没有变质现象,因而形成一个以岩体为中心、变质程度向外减弱的环带状接触变质带,称为变质晕。变质晕的宽度一般为几米至1~2km,这种宽度的变化主要受侵入体的规模、产状、成分、温度以及围岩的性质等因素控制。一般来说,侵入体规模大、温度高、围岩岩层产状平缓、富含挥发分且围岩对变质作用敏感(如泥质岩、碳酸盐岩等)时,形成的接触变质晕较宽;反之则较窄。

按引起接触变质的主导因素及变质作用方式的不同,接触变质作用可分为两种:

接触热变质作用  引起接触变质的主导因素是岩浆侵入造成的温度升高,变质作用的方式主要为重结晶作用和变质结晶作用,变质作用前后岩石的总体化学成分无显著改变。最常见的接触热变质的例子是泥质岩石变成各种角岩(如红柱石角岩)、石灰岩变成大理岩、石英砂岩变成石英岩等。

接触交代变质作用  引起变质的因素除温度以外,从岩浆中分泌的挥发性物质所产生的交代作用具有重要意义。在这一过程中原岩有物质成分的带入和带出,因而变质前后原岩总体化学成分有显著变化,同时伴有大量新矿物产生。最常见的接触交代变质的例子是碳酸盐岩(如石灰岩)与中、酸性岩浆岩相接触时所形成的夕卡岩。夕卡岩形成的过程中常伴有一些金属矿物的形成,它们可以聚集成为矿体,称为夕卡岩型矿床。其中常见的有磁铁矿、黄铜矿、闪锌矿、白钨矿等。如湖北的大冶铁矿、安徽的铜官山铜矿等。

上述两种接触变质作用都是伴随岩浆侵入而发生的,它们往往在接触变质带中联合作用,并不能绝然分开,但有时存在一定的主次关系,如在岩体的某处部位或围岩的某个层位上主要出现接触交代变质作用。

(二)动力变质作用

动力变质作用(dynamic  metamorphism)是指在构造运动所产生的定向压力作用下,岩石发生的破碎、变形以及伴随的重结晶等的作用。这种变质作用主要发生在构造运动使相邻的两个岩石块体之间发生相对运动时的接触带上,这种接触带被称为断裂带或断层带,所以,动力变质作用又被称为断裂(或断层)变质作用。动力变质作用及其所形成的动力变质岩在平面上和剖面上均呈线性或带状分布,动力变质岩也称为断层岩,如碎裂岩和糜棱岩。动力变质带的宽度可从几厘米到几公里,大型的甚至可达几十公里;动力变质带的长度一般几公里到几百公里,大型的长达1000km以上。动力变质带的规模往往与其发育的历史长短及两侧岩块的相对运动强度、断层规模等有紧密关系。

(三)区域变质作用

区域变质作用(regional  metamorphism)是在广大范围内发生并由温度、压力及化学活动性流体等多种因素共同引起的一种变质作用。

区域变质作用影响的范围可达数千至数万平方公里以上,影响深度可达30km以上。区域变质作用的温度下限(最低)约200~300℃,上限(最高)约700~800℃,静压力随深度不同变化在几十到一千多兆帕斯卡之间,除静压力外,还存在着较强的定向压力作用,它们在变质过程中常起着重要作用。区域变质作用的方式包括重结晶作用、变质结晶作用和交代作用等多种,其中尤其以变质结晶作用最为普遍,这些方式共同改造了原岩的矿物成分及结构、构造。

区域变质作用影响的范围可达数千至数万平方公里以上,影响深度可达30km以上。区域变质作用的温度下限(最低)约200~300℃,上限(最高)约700~800℃,静压力随深度不同变化在几十到一千多兆帕斯卡之间,除静压力外,还存在着较强的定向压力作用,它们在变质过程中常起着重要作用。区域变质作用的方式包括重结晶作用、变质结晶作用和交代作用等多种,其中尤其以变质结晶作用最为普遍,这些方式共同改造了原岩的矿物成分及结构、构造。

区域变质作用的发生常常和构造运动有关。构造运动可以对岩石施加强大的定向压力,使岩层弯曲、柔皱、破裂;也可以使浅层岩石沉入或卷入地下深处,以遭受地热增温和围压的作用。构造运动还能导致岩浆的活动,从而带来热量和化学物质;或者导致深部热液的向上运移。此外,由构造运动所造成的破裂,是热能、化学能及化学活动性流体在变质区内传递、渗透的良好通道。因而,构造运动为岩石的区域变质创造了物理、化学条件。

区域变质作用按照所处的压力(围压)与温度环境可概略地分为3种类型:

低压区域变质作用  发生的深度较浅,一般小于15km;压力较小,一般为200~400MPa;温度通常较高,可高达600℃以上;局部或暂时性的地温梯度很高,约25~60℃/km,通常属于高热流或地热异常区。区内中、酸性岩浆活动强烈,温度是引起岩石变质的主要因素。低压区域变质作用类似于接触变质作用,但它以分布更广,不受接触变质晕限制,形成的变质岩具有定向构造(即存在动压力作用)等特征与接触变质作用相区别,但这两者之间又存在过渡性。低压区域变质作用以出现红柱石、堇青石、夕线石等低压、高温型的变质矿物为特征。例如泥质岩经低压区域变质作用可形成红柱石片岩。

中压区域变质作用  发生的深度较大,一般大于10km;压力也较大,一般300~800MPa;区域地温梯度中等,一般16~25℃/km,平均20℃/km;温度随深度不同而不同,一般为300~600℃。中压区域变质作用是区域变质作用中最常见和最重要的类型,在自然界中分布最为普遍,它与低压区域变质作用之间并没有严格的界限,表现出过渡的关系。

高压区域变质作用  发生的深度大,一般大于10km;压力大,一般300~1000MPa,甚至可更高,并且伴有强的构造动压力作用;温度较低,一般只有200~400℃;局部或暂时性的地温梯度很低,一般7~16  ℃/km,平均只有10℃/km左右。高压区域变质作用往往与构造运动将地表或浅部岩石快速卷入地下深处有关,造成了原岩的低温、高压变质环境。这种变质作用以出现蓝闪石、硬玉等高压、低温型的变质矿物为特征。例如泥质岩经高压区域变质作用可形成蓝闪石片岩。

区域变质作用是变质作用中最主要的类型,自然界的各种原岩都可以被区域变质作用所改造。例如,石灰岩可变质成为大理岩;石英砂岩可变质成为石英岩;泥质岩类随着变质程度的加深而逐步脱水变质成为板岩→千枚岩→片岩→片麻岩→麻粒岩;中、酸性的岩浆岩可变质成为片麻岩→麻粒岩;偏基性的岩浆岩可逐步变质为片岩→角闪岩等等。在区域变质作用的地区,从平面上看,变质作用的强度往往具有一定的空间分布规律,一般中心部位变质程度较高,向边缘变质程度逐渐降低,形成一种变质强度的分带现象。

(四)混合岩化作用

混合岩化作用(migmatization)是由变质作用向岩浆作用过渡的一种超深变质作用。其最主要特征是,原岩局部或部分重熔的熔体物质与尚未重熔的固态物质发生互相交插与混合。混合岩化作用通常是区域变质作用在地热流增高条件下,进一步发展的结果。随着区域变质程度的不断加深、变质温度的逐渐升高,原岩中某些熔点较低的矿物和岩石组分(主要是偏酸性成分)开始发生重熔、分异、聚集,可一直发展到几乎全部重熔,这整个阶段都属于混合岩化作用阶段。所以,混合岩化作用随着其程度的不同,其参与混合的融体与固体之间的比例有很大的变化范围。混合岩化作用形成的岩石称为混合岩。

混合岩化作用发生的深度较大,其温度通常很高,一般达600℃以上,其中地热增温和热液增温是温度升高的重要原因;压力一般中等;化学活动性流体或热液十分普遍,并起着十分重要的作用,如引起原岩中的一些组分熔点降低,导致交代作用等。由于长石、石英等浅色矿物的熔点偏低,且在热液的作用下易被交代、置换而进入流体中,所以混合岩化中的熔体部分一般为偏酸性物质,或者说是偏花岗质物质,它们常呈眼球状、脉状、树枝状、肠状等形态穿插于未熔融的固体之间,通常被称为脉体或浅色体。而未熔融的物质由于包含许多暗色矿物,一般颜色较深,通常称为基体或暗色体。所以,混合岩一般由基体和脉体两部分组成。

  本文标题:岩浆作用与变质作用-变质作用
  免责声明:本文来源于网络,文中有些文字或数据已经过期失效,仅供学习备课参考!
  电脑版地址:http://www.cgzdl.com/shuku/247/9928.html
  手机版地址:http://m.cgzdl.com/shuku/247/9928.html

    标签:变质作用

    最新评论列表

    (共有 条评论) 我要发表评论